from netra import workflow, SpanWrapper
@workflow()
def generate_with_config(client: Cerebras, prompt: str, temperature: float = 0.7):
config_span = SpanWrapper("cerebras-configured", {
"prompt": prompt,
"temperature": temperature
}).start()
response = client.chat.completions.create(
model="llama3.1-70b",
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=1000
)
result = response.choices[0].message.content
config_span.set_attribute("response", result)
config_span.end()
return result