# Netra Documentation > Netra is an observability, evaluation, and monitoring platform for AI/LLM applications. This is the official documentation. ## About Netra Netra provides: - **Tracing**: Capture LLM calls, agent execution, tool invocations, and multi-step workflows - **Evaluation**: Systematic quality testing with LLM-as-Judge, rule-based, and code evaluators - **Monitoring**: Real-time dashboards, alerts, and cost tracking - **Multi-tenancy**: Native per-tenant tracking for B2B applications ## SDK Installation Python: ```bash pip install netra-sdk ``` TypeScript: ```bash npm install netra-sdk ``` ## Quick Start ```python from netra import Netra Netra.init(app_name="my-app") # All OpenAI, Anthropic, LangChain, CrewAI calls are now traced automatically ``` ## Documentation Structure ### Getting Started - /quick-start/Overview - Platform overview and setup - /quick-start/QuickStart_Tracing - First tracing guide - /quick-start/QuickStart_Evals - First evaluation guide - /quick-start/QuickStart_Alerts - Alert setup guide ### Observability - /Observability/Traces/overview - Tracing concepts - /Observability/Traces/spans - Span types (Generation, Tool, Agent, Workflow) - /Observability/Traces/auto-instrumentation - Automatic tracing - /Observability/Traces/decorators - @agent, @task, @workflow decorators - /Observability/Traces/manual-tracing - Manual span creation - /Observability/Agents - Agent-specific observability - /Observability/Tenants - Multi-tenant tracking - /Observability/Users - User tracking - /Observability/Session - Session management ### Evaluation - /Evaluation/Evaluation-overview - Evaluation concepts - /Evaluation/Datasets - Test dataset management - /Evaluation/Evaluators - LLM-as-Judge, rule-based, code evaluators - /Evaluation/TestRuns - Running evaluation experiments ### Integrations #### LLM Frameworks - /Integrations/orchestrators/LangChain - /Integrations/orchestrators/LangGraph - /Integrations/orchestrators/CrewAI - /Integrations/orchestrators/LlamaIndex - /Integrations/orchestrators/PydanticAI - /Integrations/orchestrators/LiteLLM - /Integrations/orchestrators/Haystack - /Integrations/orchestrators/DSPy - /Integrations/orchestrators/MCP - /Integrations/orchestrators/ADK #### Model Providers - /Integrations/ai_providers/OPENAI - /Integrations/ai_providers/ANTHROPIC_CLAUDE - /Integrations/ai_providers/GEMINI - /Integrations/ai_providers/AWS_BEDROCK - /Integrations/ai_providers/MISTRAL - /Integrations/ai_providers/GROQ - /Integrations/ai_providers/COHERE - /Integrations/ai_providers/VERTEXAI - /Integrations/ai_providers/OLLAMA #### Vector Databases - /Integrations/db-docs/Pinecone - /Integrations/db-docs/CHROMA - /Integrations/db-docs/Qdrant - /Integrations/db-docs/Milvus - /Integrations/db-docs/Weavite ### SDK Reference - /sdk/overview - SDK overview - /sdk/python - Python SDK reference - /sdk/typescript - TypeScript SDK reference ### Analytics - /analytics-and-dashboards/usage-utilities - Usage APIs (get_tenant_usage, list_traces, list_spans) - /analytics-and-dashboards/dashboard-query - Dashboard query API ### Cookbooks (End-to-End Tutorials) - /Cookbooks/pdf-qa-rag-chatbot - RAG pipeline tracing and evaluation - /Cookbooks/saas-multi-tenant-platform - Multi-tenant B2B observability - /Cookbooks/langchain-react-agent - LangChain ReAct agent tracing - /Cookbooks/crewai-content-pipeline - CrewAI multi-agent collaboration ## Key Concepts ### Initialization ```python from netra import Netra from netra.instrumentation.instruments import InstrumentSet Netra.init( app_name="my-app", instruments={InstrumentSet.OPENAI, InstrumentSet.LANGCHAIN}, trace_content=True, # Capture prompts/completions ) ``` ### Decorators ```python from netra.decorators import agent, task, workflow @workflow(name="my-workflow") def my_workflow(): pass @agent(name="my-agent") def my_agent(): pass @task(name="my-task") def my_task(): pass ``` ### Manual Spans ```python from netra import Netra, SpanType with Netra.start_span("my-operation", as_type=SpanType.TOOL) as span: span.set_attribute("key", "value") # Your code here ``` ### Multi-Tenant Tracking ```python Netra.set_tenant_id("customer-123") Netra.set_user_id("user-456") Netra.set_session_id("session-789") ``` ### Usage APIs ```python usage = Netra.usage.get_tenant_usage( tenant_id="customer-123", start_time="2026-01-01T00:00:00.000Z", end_time="2026-01-31T23:59:59.000Z", ) ``` ## Links - Website: https://getnetra.ai - Dashboard: https://app.eu.getnetra.ai/login - Python SDK: https://pypi.org/project/netra-sdk/ - TypeScript SDK: https://www.npmjs.com/package/netra-sdk - GitHub: https://github.com/KeyValueSoftwareSystems/netra-sdk-py